plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
DIV(div(x, y), z) → TIMES(y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
PR(x, s(s(y))) → DIVIDES(s(s(y)), x)
DIVIDES(y, x) → TIMES(div(x, y), y)
DIVIDES(y, x) → EQ(x, times(div(x, y), y))
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
EQ(s(x), s(y)) → EQ(x, y)
DIV(div(x, y), z) → DIV(x, times(y, z))
TIMES(s(x), y) → TIMES(x, y)
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
DIV(x, y) → QUOT(x, y, y)
IF(false, x, y) → PR(x, y)
DIVIDES(y, x) → DIV(x, y)
PRIME(s(s(x))) → PR(s(s(x)), s(x))
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
DIV(div(x, y), z) → TIMES(y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
PR(x, s(s(y))) → DIVIDES(s(s(y)), x)
DIVIDES(y, x) → TIMES(div(x, y), y)
DIVIDES(y, x) → EQ(x, times(div(x, y), y))
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
EQ(s(x), s(y)) → EQ(x, y)
DIV(div(x, y), z) → DIV(x, times(y, z))
TIMES(s(x), y) → TIMES(x, y)
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
DIV(x, y) → QUOT(x, y, y)
IF(false, x, y) → PR(x, y)
DIVIDES(y, x) → DIV(x, y)
PRIME(s(s(x))) → PR(s(s(x)), s(x))
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
DIV(div(x, y), z) → TIMES(y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
PR(x, s(s(y))) → DIVIDES(s(s(y)), x)
DIVIDES(y, x) → TIMES(div(x, y), y)
DIVIDES(y, x) → EQ(x, times(div(x, y), y))
PLUS(s(x), y) → PLUS(x, y)
TIMES(s(x), y) → PLUS(y, times(x, y))
EQ(s(x), s(y)) → EQ(x, y)
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(div(x, y), z) → DIV(x, times(y, z))
TIMES(s(x), y) → TIMES(x, y)
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
DIV(x, y) → QUOT(x, y, y)
PRIME(s(s(x))) → PR(s(s(x)), s(x))
DIVIDES(y, x) → DIV(x, y)
IF(false, x, y) → PR(x, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
EQ(s(x), s(y)) → EQ(x, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
EQ(s(x), s(y)) → EQ(x, y)
s1 > EQ1
EQ1: [1]
s1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
↳ QDP
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
↳ QDP
PLUS(s(x), y) → PLUS(x, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PLUS(s(x), y) → PLUS(x, y)
s1 > PLUS1
s1: [1]
PLUS1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
↳ QDP
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
TIMES(s(x), y) → TIMES(x, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
TIMES(s(x), y) → TIMES(x, y)
s1 > TIMES1
TIMES1: [1]
s1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
QUOT(x, 0, s(z)) → DIV(x, s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(div(x, y), z) → DIV(x, times(y, z))
DIV(x, y) → QUOT(x, y, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
DIV(div(x, y), z) → DIV(x, times(y, z))
Used ordering: Combined order from the following AFS and order.
QUOT(x, 0, s(z)) → DIV(x, s(z))
QUOT(s(x), s(y), z) → QUOT(x, y, z)
DIV(x, y) → QUOT(x, y, y)
0 > [QUOT1, DIV1, div1]
QUOT1: [1]
DIV1: [1]
plus1: [1]
0: multiset
div1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
QUOT(s(x), s(y), z) → QUOT(x, y, z)
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(s(x), s(y), z) → QUOT(x, y, z)
Used ordering: Combined order from the following AFS and order.
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
[QUOT1, 0, DIV1] > s1
QUOT1: [1]
DIV1: [1]
0: multiset
s1: [1]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
QUOT(x, 0, s(z)) → DIV(x, s(z))
DIV(x, y) → QUOT(x, y, y)
0 > s > QUOT2
0 > DIV1 > QUOT2
QUOT2: [2,1]
DIV1: [1]
0: multiset
s: []
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
IF(false, x, y) → PR(x, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
PR(x, s(s(y))) → IF(divides(s(s(y)), x), x, s(y))
Used ordering: Combined order from the following AFS and order.
IF(false, x, y) → PR(x, y)
plus > s1 > false > [PR2, IF2]
plus > s1 > times2
plus > s1 > quot2 > 0 > [eq, true]
plus > s1 > quot2 > 0 > div2
true: multiset
false: multiset
eq: []
quot2: [2,1]
plus: []
s1: [1]
IF2: [1,2]
0: multiset
times2: [2,1]
div2: [2,1]
PR2: [1,2]
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
IF(false, x, y) → PR(x, y)
plus(x, 0) → x
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(0), y) → y
times(s(x), y) → plus(y, times(x, y))
div(0, y) → 0
div(x, y) → quot(x, y, y)
quot(0, s(y), z) → 0
quot(s(x), s(y), z) → quot(x, y, z)
quot(x, 0, s(z)) → s(div(x, s(z)))
div(div(x, y), z) → div(x, times(y, z))
eq(0, 0) → true
eq(s(x), 0) → false
eq(0, s(y)) → false
eq(s(x), s(y)) → eq(x, y)
divides(y, x) → eq(x, times(div(x, y), y))
prime(s(s(x))) → pr(s(s(x)), s(x))
pr(x, s(0)) → true
pr(x, s(s(y))) → if(divides(s(s(y)), x), x, s(y))
if(true, x, y) → false
if(false, x, y) → pr(x, y)